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Abstract

Suppose thaX = (X, X1) andY = (Yg, Y1) are Banach couples and suppose fhat Xg — Yg
andTy : X1 — Y1 are bounded and linear. Also assume that (4(X))’" and thatly andTy agree
as maps fromd(X) N kerI to X(¥). If the maps do not agree as maps from allgfl) we cannot
interpolateTy and Ty to a mapr : Jg,p()_() — Jg,p()_’), whereJy, , denotes the classicdtmethod.

This situation can for example be found in an article on interpolation of Hardy-type inequalities by
Krugljak, Maligranda and Persson. We will in this paper define funcigrs,  such that7p and

T1 interpolate to a maff : Jg’p;r()_() — Jg,,,(f’). The main purpose of this paper is to make the
definition of theJU,p;r()_() spaces and build a theory for them. We will also do this for more general
real parameters. If is bounded orX it holds that.lg‘p;r(}_() =Jy,p(XoNkerI', X1). These spaces

have been studied by Kalton, lvanov and Lofstrdm. Their results will follow as corollaries to the
more general results of this article and our new theory can be thought of as a theory for generalized
subcouples of codimension one.

In the last section, we apply our theory to a situation considered by Krugljak, Maligranda and
Persson in connection with Hardy-type inequalities. We prove new results and provide a new way of
understanding that kind of problems.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In Sectionl, we will give the reader an introduction to the content of the article. For an
introduction to interpolation theory see Section 2 and for further reading on that topic see
[1-3,6].

If X andY are Banach couples such that c X andY; c X; are closed andy and
Y1 are embedded int&(X) with the embeddings int&o and X1 then we say that is a
subcouple ofX. Pisier[15] studied a case whed& = L”, X1 = L7 on the unit circle and
Yo = H?, Yy = H? on the unit disk. He proved that s K-closed, that is, it holds that

K(t,y,Y)<CK(t,y,X) Vye2(¥).
From that he concluded that
)_70,1, ~ )_(O,p N Z()_/)

for all 0 andp. To prove that is K -closed he used duality results between subcouples and
quotient couples and that duality was later investigated in a more general situation by Janson
[5]. To the best of the author’s knowledge, interpolation of subcouples and interpolation of
quotient couples was first considered by Lions and Maggtdsind thek -closed concept
was first used by Peetf&4].

Lofstrom[13] looked at different ways of constructing subcouples and one of them was
to consider a finite sef’ C X} and letYg = Xo andY; = X1 Myer kery. In [11] he
used those results to interpolate boundary-value problems of Neumann type[a2fhie
applied them to interpolation with constraints. He also considered the special case when
I' is just one linear functional oX;. This case was also independently considered by
Ivanov and Kalton and if4] they published a complete answer, for regular couples, to the
question about wheXo, X1 Nker I')g , is a closed subspace 0fo, X1)g,, and from that
they deduced results about exponential bases in Sobolev spaces. A particularly interesting
observation is that in this case it is only the interpolation method and-fln@ctional ofI”
that determines the result. That will also be true for the more general theorems presented
in this article. In botH{13,4], two indices (the definitions of which can be found in Section
5) were calculated fronk (¢, I', X’) and the result for th€), p)-method is determined by
comparingd with the indices. Call the indice® andag. 0< 0p < 0o < 1 and the result is
that
1. If 0 < og it holds that

(Xo, Xanker Ny , ~ (Xo, X1)g,p-
2. If 0 > oo it holds thatl” is bounded oriXo, X1)g,, and
(Xo, X1 Nker Iy , ~ (Xo, X1)g,, N ker I'.

3. If oo < 0 < doitfollows that(Xo, X1N ker I')g , is notaclosed subspace@fo, X1)g, -
Ivanov and Kaltorf4] proved this result and Lofstrofd1] proved the same result except
that he did not give the answer fére {oo, do}. The proofs are different and were produced
independently.
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The article by lvanov and Kaltojd], will be the foundation for the theory constructed in
this article and we will show that their arguments can be used to prove more general results.
In [4] they described the interpolation spaces they studied witli theethod, that is

o0
(Xo. X1Nker Ny, = {x € Z(X) |x = Z xk, xx € ker 'NA(X),

k=—o00

Il{max(|lxx [l xo» 2¢ 1%k Nl x)2~ %)} ler < o0}, @)

where the sum converges ¥(Xg, X1 N ker I'). That is equivalent to demanding that the
sum should converge iB(X), sinceX(XoNker I', X1) ~ X(X) which is proved in Lemma
4.1. Now, we can make the observation that the assumptiod tibounded on at least
one of the endpoint spaces is not necessary for the space in (1)X@ithconvergence)
to be well defined. We only need to assume that (A4(X))’. We will denote the space in
(1) by Jy . r(X) and we will also use the notatialy ,(X) for (Xo, X1)g, . Since it clearly
holds that

Jo.p:r(X) C Jy p(X)

we can also in this more general situation ask the question aboutﬂy};,eﬁ()_() is aclosed
subspace 0170,,,(}_(). In this situation, we will see that we get four indices in the interval
[0, 1]instead of two. Let us call theway, dg, 41, o1 Whereag is always the smallest ard

is always the largest. Their definitions can be found in Se&idmder the extra assumption
thatdg < d1 we can give a complete answer for regular couples and that is as follows:
1. If 0 < og or 6 > g7 it holds that

JO,p;F(X) ~ Jﬂ,p(}_()'
2. If 6o < 0 < 61 it holds thatl" is bounded oy ,(X) and
Jo.p.r(X) ~ Jy ,(X) Nker I'.

3. If 09g<0< g or 01 <0< o1 it follows that Jg’p;l"()_() is not a closed subspace of

Jo, p(X).
So, what are these new spaces good for? The point with them is that if we have bounded
linear mapgp : Xo — YpandTy : X1 — Yi that agree om(X) Nker I but not on4(X),
as maps fromi(X) to X(Y), then we can not interpolate with thig ,-method to geta map
T : Jy,(X) — Jy,(¥) but we will see that i) > do or 0 < 51 we get an interpolated
bounded maff’ : Jy .1 (X) — Jp ,(Y). This is especially interesting whep, .. - (X) is a
closed subspace df;,,,(}?) with equivalent norms. We will also define spadgsr (X) for
the general real method and not only for te p)-method and we will also in that case find
assumptions that allow us to interpolate operators that only agre@Xnn ker I'. In the
author’s Ph.D. Thesis [16], the results were also generalized to finitely many functionals. In
[7,8], this kind of interpolation was applied to the study of Hardy-type inequalities initiated
in [9] and to interpolation of Banach algebras. The theory developed in this paper will in
the last section allow us to answer a question connected to some resul{9from
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2. Preliminaries

A Banach coupleX consists of two Banach spackg and X continuously embedded
into a Hausdorff topological vector spae Given a Banach couplk we define two more
spacesd(X) = XoN X1 and2(X) = Xo + X1. 4(X) and 2 (X) are equipped with the
norms

X1l ¢y = Max(llxlxo. lIx1lx)
(X)

and

lxll 5%y = inf{lixollxo + llxtlix, | X0 + x1 = x}.

For everyr > 0 we can define other equivalent norms on these spaces by renakming
These norms are

ey ) = I, x, X) = max(lxl o 71l x,)

and
Ixlly, ) = K(t.x, X) = inf{||xollxo + ¢llx1llx; | X0+ x1 = x}.

The functions/ (-, x, X) andK (-, x, X) above are usually called tde andK-functionals.

We will say thatX is regular if4(X) is dense in botiX g andX1. If X is regular it follows
that X, and X7 are naturally embedded ir_mﬁ()_()/ and by choosing those embeddings we
define the dual coupl&’. It holds thatX(X’) = (4(X)) andA4(X") = (X(X))’. Similar
identities hold by definition for thel, andX, spaces.

If X andY are Banach couples we say that a pair of linear and bounded Mgps,
Xo — Yo andTy : X1 — Y1, constitutes a couple map : X > Yif they, as maps into
X(Y), agree on the intersection. The vector spAcE, Y) = (T : X — Y} with the norm
17| = max(|| Toll, || T1])) is @a Banach space. We will also use the notatiok) = L(X, X)

If X is aBanach couple antis a Banach space with the property tHak) c X c X(X),
wherec means continuous inclusion, then we say tat an intermediate space faf. If
it also holds thaf” : X — X is bounded for all" € L(X) we say thaK is an interpolation
space.

TheK- andJ-functionals can be used to construct interpolation spaces with the sokKalled
andJ- method. They are equivalent to each other and are often just referred to as the real
method.

Firstwe will define what equivalent means. We say that two funcfiandg are equivalent
if there are positive constantg andcz such that

caaf <g<caf.

Two Banach spaces are equivalent if we can identify them as vector spaces and the norms
are equivalent. We will denote equivalencey

In this paper we will choose to work with the discrete versions oflthendK-method.
Firstleté, = (¢,, £,(27%)) wheret,, is defined orZ and

O w27 KPP p < 0o,
suplox2¥] p = oo.

HotHl e, 24y = {
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Let E be an interpolation space fét. Then let

x= Y x x e AX), 1@ 2l < oo

k=—00

Jp(X) = {x e X(X)

and the norm is the infimum over all such representatlorn(ﬂi) is dense irE it follows
that 4(X) is dense inJg(X) for all Banach couplest and we say thak is a regular
parameter for the discrefemethod. IfD is an interpolation space ., K p is defined by

Ixll g, ) = LK@ 0}, x € 2(X).

A parameter for theg -method is called non-degenerate if it is not containei i £1(27%)
and a parameter for th€-method is called non-degenerate if it is not containeéh.inJ
l5o(27%). If D is a non-degenerate parameter for the discketmethod ancE is a non-
degenerate parameter for the discréteethod it holds thak p(X) ~ JKD(Z_l)(X) and

Je(X) ~ K-, (X) for all Banach couple¥ .

3. An algebraic construction

In this section, we present an algebraic construction that we will need in some proofs in
the next section.

Definition 3.1. If X is a Banach couple and € (4X)" we define the Banach coupjeX
by letting it consist ofXg and X1 embedded into the spa¢&y & X1)/M where
M = {(xo, x1) | {xo, x1} C A(X) Nker I', xo + x1 = 0in 2(X)}

which will then coincide with®(,-X).

Remark 3.1. Note that>(X) = (Xo @ X1)/M where
M = {(xo0, x1) | {x0, x1} C A(X) x0 + x1 = 0in Z(X)}

is a quotient space df(-X) sinceM C M.

Remark 3.2. If X is a Banach couple and € (4(X))’ it holds that

A(rX)={(XO,X1)€X069X1IXO—X1=0inZ(r_X)} i
={(x0,x1) € Xo® X1 | x0—x1=01In2(X), {x0,x1} C 4(X)Nker I'}
=A(X)Nker .

In L(rX, X) there is an especially important map, namely the map consisting of the
identity maps onXo and X1. We will denote that map witlQ because the induced map
0: Z(FX) — X(X) is a quotient map. Lel ands1 be the embeddings dfp and X1 into
2(rX). Q(so(xo) + s1(x1)) = 0if and only if xo + x1 = 0 in X(X) since this is the image
of so(xo) + s1(x1) . Furthermoreso(x) + s1(—x) = 0 for a certainc € A(X) if and only if
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x € A(rX) = A(X) Nker I'. It follows thatsg(x) + s1(—x) = so(y) + s1(—y) if and only

if I'(x) = I'(y) and therefore the kernel @ is one dimensional and it is spanned by the
elementu = so(x) — s1(x) wherex is any element i(X) with I'(x) = 1 and as ir{16]

we will refer tou as the predual of .

Theorem 3.1. Let X be a regular Banach couplét I" € (4(X))’ and let u be the predual
of I'. It then follows that

1<Kt u, [ X)K(1/t, T, X)<2.

Proof. Since all decompositions ofare of the form: = so(x) + s1(—x) wherex € 4(X)
andI'(x) = 1 it follows that

K(t,u, p X)=inf{|lxllo+tllx]l1 | x € 4(X), I'(x) =1}

1
=inf { ——; |lxllo+ tllx]|| <1}'
{|F(x>| !

Since K(1,I', X') = sup{l'(x)| | J(t,x,X)<1} and J(t, x, X) <|x[lo + tlx[1 <2
J(t, x, X) the result now follows. [I

4. The Jg.r-functor

Let E be a regular parameter for the dis_cretmgthod,)_( = (Xo, X1) aregular Banach
couple,I” a bounded linear functional of(X) and¢y = (1, 21(27%y). DefineJg.r(X) C
JE(X) by

Jer(X)={xe2X |x= Y x. xeker I, {J(2° x0)} € Jp(f1))

k=—o00

and let the norm be the infimum dfJ (2%, x)}|| over all such representations. For the
(0, p)-method we will writeJy , and Jy .. We will begin our investigation of . by
stating some basic results. They follow easily from the definition and full proofs can be
found in[16] on pp. 49-50.

Property 1. If X is a Banach couplel” € (A(X)) and E is a parameter for the discrete
J-method it follows thaf . 1 (X) is a Banach space and if E is a regular parameter it holds
that 4(X) Nker I'is dense in/g.r(X).

Property 2. Let X be a Banach coupld, e (A()_Q)’ and let E be a regular parameter
for the discrete J-method. Then the closurd/ gf (X) in Je(X) is Je(X) Nker I'if I' is
bounded in the/g (X)-norm and the whole afg (X) if I' is unbounded.

The following theorem contains the result that makes the spacg$X) interesting.
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Theorem 4.1. Suppose thak = (Xo, X1) andY = (Yp, Y1) are regular Banach couples,
thatI" € (4(X))’, that E is a non-degenerate parameter for the discrete J-method and that

1 -
[ ), e *

If To : Xo — YoandTy : X1 — Y; are bounded linear operators whiciwhen considered
as maps fromd(X) to X(Y), agree on4(X) N ker I, then there is a bounded linear map
T : Jg r(X) — Je(Y) such that T as a map from(X) N ker I to 2(Y) agrees withTp
andTy.

Proof. (7o, T1) constitutes a couple map: rX — Y and therefore interpolates to a map
T :Jg(rX) — Jg(Y). By Theorem3.1it holds that

1<K, u,rX)K@Q/t,T, X)<2,

whereu is the predual of . Hence, it follows from (2) that ¢ Je(rX) = Ky e,) (rX)
and therefor&) : Jg(rX) — Jg.r(X) is an isomorphism and we get our desired map by
composingr with 01, O

Lemma 4.1. If X is a Banach couple wher(X) # {0} andI” € X it holds that>(XoN
ker I', X1) ~ X(X) and if I is also in X/ it holds thatI" € (X(X))" and X(Xo Nker I',
XiNnkerlN ~ X(X)NnkerTI.

Proof. It is obviously true thaf] - Iz < Il - Is(xonker I x;) SO We only need to prove that
there is a constar@ such that| - || s xynker I, x,) < CIl - I3x)-
Assume thai” is bounded orXg, thatx = xg + x1 and that

lxllsz)(d+ &) = lixollo + llxzllz.

Takew € A(X) with I'(w) = 1 andJ (1, w) < ﬁ Then it follows that

lxlxxonker r,xy < llxo — I'(xo)wllo + llx1 + I'(xo)wll1
< lxollo + llxalle + [T xo) [ (lwllo + llwll1)

< lxollo + llxall1 +

4
25 1 ollxollo < €Il

ThusJp.r(X) = Je(Xo Nker I', X1) and in the same wayg.(X) = Je(Xo Nker I,
X1 Nker I') whenI is also bounded oX;. [

Proposition 4.1. If X is a Banach couple withl (X) # {0}, I' € X{ and E is a regular
parameter for the discrete J-method it holds that

Je.r(X) = Jp(XoNker I', X1)
and if I' is also bounded o1 it holds that

Je.r(X) = Je(Xonker I', Xy Nnker IN) ~ Jg(X) Nker I
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Proof. To prove thatIE;p()_(_) = Jp(XoNkerI', X1) whenI” € X, we need to prove that
Y e Xk COnverges ik (X) iff Y2 xx converges ir¥'(Xo Nker I', X1). That holds
because (Xonker I', X1) ~ X(X) andJg.r(X) = Jg(XoNker I', X1Nker I') whenT is
also bounded o1 because thefi is bounded oiX' (X) andX(XoNker I', X1 Nker I') ~
X(X)NkerI'. ThatJg(XoNnker I', Xy Nker I') ~ Jg(X) Nker I’ whenI” € (XX) is a
well-known fact. [

We will continue by finding conditions for WhefE;]“()_() is closed in/g (X). Define the
spaceG = G k(. ) by letting it consist of all sequencés;} with

Ok
Houtllc = |l {m} e < oo.
Since
— 7 T SJ(@
ket o S7@

it follows that:
J uh e E={<Tur >k €G

and that is a reason for studyi® Another reason is stated in the following lemma.

Lemma 4.2. If X is a regular Banach couplet is a regular parameter for the discrete
J-method and” € (4(X))’ it holds that

IFeJg(X) < ¢edq,
where¢ is defined by the formula
o0
plouh = > .
k=—00

Proof. The result follows from the fad8, Theorem 3.7.2{hat

||F||JE()'()':5UP{ Y K@D ||{ﬁk}||E<1}
k=—o00
_ = . Yk } .
=su b= <1; =|dllg - O

Let (ex) be the standard basis@, letSbe the shift operator defined BYe;) = ex11 Vk
and letT = § — I. The following two theorems are based on an idea ffdmR(T') will
denote therange df = § — 1.

Theorem 4.2. Let X be a regular Banach coupld; € (4(X))" and let E is a regular
parameter for the discrete J-method. Let also G and T be defined as above. If
(&) R(T) = G itfollows thatJg.r(X) ~ Jg(X) and if
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(b) R(T)is closed with codimension one in G it follows tiia€ (J£ (X)) andJg.r(X) ~
Je(X)Nker .

Proof. The plan is that to every € Jz(X) in (a) andx € Jz(X) Nker I' in (b) and to
every almost optimal representatior= Y > ___ x find a representation = > "72___
such thaty, € ker I and

I (2%, yol e < CII 2, x) g,

whereC is independent of and the representations.

SinceR(T) is closed inG, there is a constaft such that for alj € R(T) thereisx € G
such thatT'o. = f and|«|| < D||To|l. If R(T) is closed with codimension one, th&{T)
is the kernel ofp which is defined by

dluh) = Y o

k=—00

and it follows that” is bounded oz (X) by Lemma5.1. Now suppose that Jg (X) with
norm 1 and in (b) thaf’(x) = 0. Then there existé) in A(X) such thal "2 xx = x
and

172", x0lle <2,
which implies that

1) lle <2

In (b) we also have that

e¢]

Z I'(xx) =0.

k=—00

Thus, we can find: = {o} € G such thatT'(«) = {I'(xx)} and|l«|l¢ <2D. Then find
elementsi; € A(X) such that

[0tk |
K@k, TI)

andl (ur) = o. It follows that

J2 u) <2

T 2", uoble < 2llullc <4D.

Definev by vy = uy—1 — uy. Then it follows that

I volle < I @ uk—1) + T u)}lle
< 3HJI @, up}ll < 12D

andl'(vy) = o1 — o = I'(xp) andz,fi vr = 0. Thus,x = thifoo(xk — vr) and
x € Jg.r(X) with

Il ) < (12D +2).

—00
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It follows that in case (a) we havge. r(X) ~ Jg(X) and in case (bYg.(X) ~ Jg(X) N
kerI'. O
With an additional mild assumption we also get the converse.

Theorem 4.3. Let X be a regular Banach coupld; € (4(X))" and let E is a regular
parameter for the discrete J-method. Let also G and T be defined as before and assume that
Z;)O:_OO min(1,2")||S" ||B(E) < oo. Then if
(@) Je.r(X) & Jg(X) it holds thatR(T) = G and if
(b) I is bounded og(X) and Jg.r(X) &~ Jg(X) Nker I' it holds thatR(T) is closed

with codimension one in G.

Proof. Assume that/z.r(X) is closed inJg(X). Then (a)Jg;r(X) ~ Jg(X) if I is not
bounded o/ (X) and (b)Jg.r(X) ~ Je(X) Nker I' if I'is bounded. In both cases, there
is a constanD > 0 such tha1|x||JE_F(,-() < Dllxll;,z)- In case (b)

dlud) = Y o,
k=—00

is continuous o1 andR(T) C ker ¢. )
Assume thatr = (a) € G, |lall¢ = 1 and in (b) thad 22 ax = 0. Takex; € 4(X)
such thatl"(x;) = a; and
||
K@% I
Then definexby x = Y 72 x«. it follows that|lxl,, %, <2 and in (b) that"(x) = 0.
Now, we can findy, € 4(X) Nker I' such tha ;2 y, = x and

J(25, x) <2

I{J (2", yo} e <4D.

Letuy = xx — yr andv, = > g0, q Uk = — D r—_o uk. Then it follows that
I{J 2", w)} g <4D + 2

and

Tl < I 25, vl e < CIHI X, ud e

whereC =Y 2 min(1, 2%) S| g(x) since

{llvallo}le < {Z ||14k||0}

k=—o00

o0
= | > Ulun—rllobn
k=0 E

= (§j¢>meu
k=0

{é ””n—k”O}n

> (S {llunllodn)

k=0

E E

E

o0
< ) IS s {llunllo}l &
E k=0




88 P. Sunehag / Journal of Approximation Theory 130 (2004) 78—98

and

o
2" lvalla} e < {2" > ||uk||1}
n

k=n+1

-1
= {2” > lunilia

k=—00 E
-1

> S22 uyll)

k=—00

-1
= | D (2unrlla}
k=—o00

E

-1
= (Z zksk) (2"l

k=—00

E

E

-1
> 208 1) 112" a1} | -

k=—o00

N

it now follows that? ({I'(vi)}) = {I'(ur)} = {I'(xp)} = {ax}. O

Because of the previous two propositions we know that we can gfly andG instead
of JE;F()_() and Jx(X). We will now look at the special case when the paramEtex a
weightedt1-space. Note thab depends otk only throughK (-, I', X).

Proposition 4.2. LetX be aregular Banach coupl€, € (4(X))’ and let E be the parameter

for the discrete J-method defined by}l = Y ||l wherely 11 < <2(;,1. Then

the space G is defined Biyf;}lc = >_ |filwk wherew, = : and7T =S —1on

G.Then

(a) Tisinjective iffy wy = oo.

(b) R(T) = G ifthere is a constant C not depending on n suchthgt ,  , w < Cw, ¥n
or ZZ;EOO wr < Cw, V.

(c) R(T) is closed with codimension one if there is a constant C not depending on j such
that Y/ S uy <Cw;jand Y/t w < Cw_; V).

Sk
K@2%.1)

Proof. (a)

o
Ta=0 <<= a=c Z ek,
k=—o00
soT is injective if and only if

Z er ¢ G.

k=—00
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(b)
o) k
Y w<Cw, Vn=1 > ojteG YuleG
k=n+1 j=—00
since
00 k 00 00
Z Z 0| wi < Z Zwk loc|.
k=—00 | j=—00 j=—00 \k=j

It now follows thatR(T) = G because
k
T|4{- Z oj ¢ | = {ou}

j=—00

In the same way

n— 00
Z wr < Cw, = Z o eG Y{u}ledG
k=—o00 Jj=k+1
since
00 00 [} j—1
Do 2 w20 | 20w |l
k=—o00 |j=k+1 j=—00 \k=—o00

and it follows thatR (7)) = G because
o0
T Z o = {og}.

j=k+1

(c) The linear functionad from Lemma4.2is bounded since

o>

<l

and thereforer (T') C ker ¢. Assume thafo,} € ker ¢ and let

oo k
D=

Jj=k+1 j=—00

89
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it follows that

oo oo

Do iwe

k=—o00 |j=k+1

la)lle

oo oo

= Z Z o wk+§: ia—j Wk

k=0 |j=k+1 k=1|j=k

0o j—1 0o

J
Sl [ D we [+ D el D] wa | <€+ D)o
j=1 k=0 j=1 k=1

N

and

T{ar} = {ou}. 0

Remark 4.1. The statements in Propositidi2 above are also true whéhis defined by

o = lowlPLx

where 1< p < oco. The proof is the same just with Minkowski's inequality instead of the
triangle inequality.

5. The classical real methods

In this section, we look at what our results in the previous section imply fo¢Gthe)-
method. In particular the result frofd] follows. In our more general case we get four
indices that determines the answer compared to two indices in the old case Wrere
bounded on at least one of the endpoint spaces.

Definition 5.1. Let X be a Banach couple adde (4(X))’. Then defingg, 51, 6o ando1
by

I|m su lo K@ I 0 lim inf Io K@ 1)
01 = _— = e,
1= oo np % %o T AT oon\Ok % %21
1 K"tk I K"tk I
op= lim s lo _— = lim inf = |0 _—
0= 32 ko T A k%% k@ T

The following three propositions follow easily from the definition above. The full proofs
can be found if16, pp. 66-67].

Proposition 5.1. Suppose thaX is a regular Banach coupld;1 € (4(X)),I'» € (4(X))
and that

cK(t, 1, X)<K(t, T2, X')<CK(t, 1, X)),

where0 < ¢ < C. It then holds that"; and I'> have the same indices.
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Proposition 5.2. Let X be a regular Banach coupld, € (4(X))’ and letsg, o, d1 and
o1 be defined as in Definitiob.1above. Then it follows that

max{ao, do, 01, 01} = 01
and
min{co, do, 41, 61} = go.

Proposition 5.3. Let X = (Xo, X1) be a regular Banach coupléet I' € (4(X))’ and
let the indicesoo, dg, 51 and o1 be defined as above. Also I8 = (X1, Xo) be the
reversed couple of and assume thaty, 50, 51 and g1 are the indices calculated from
K, I, (X")). Then it holds that

61=1—09, Go=1—01

and

01=1—90g, dp=1-01.

In Theorem4.1we introduced an assumption that has to hold if we want to use a space
Je.r(X) for interpolation purposes. In the proposition below we state that fo(@hg)-
method that holds il > g or 0 < 61.

Proposition 5.4. Assume thak is a regular Banach couplghat I € (4(X)), thatf e
(0,1)and thatl< p < co. If 0 > dg or 0 < 9, it follows that

= 00.
0,p

el
K@, T, X"

Proposition 5.5. Let X be a regular Banach coupld; € (4(X))" and letd € (0, 1) and

1< p < o0.

(@) If 0 > g1 0r 0 < ag it follows thatJy .. (X) ~ Jg ,(X).

(b) If 6o < 0 < 41 it follows that ! is bounded oy ,(X) and Jy . (X) ~ Jy ,(X) N
ker I.

Proof. (a) The plan in this proof is to verify the assumptions from Propos#ia@n
0>61$E|é : 0>9>01.

It then holds that there is a constéhsuch thak > K andn € Z implies that
.1 K"tk I
0> -logy ——-—
%% ko
2(9(k+n) Zé(n)

—0)k
Z K2 K@D

= w_(n+k)2(9 > Wy,
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2—0n

gz N

which implies that there is @ such thafy ;2 ; wx < Cw, ¥n wherew, =
the same way < og implies that there is & such that

n—1
Z wy <Cw, Vn.
k=—00

(b)0 <01 = 30 such that) < 0 < 01 andK < 0 such that

K(2n+k’ I

(0—B)k
K@D VESK VYn<0 = w_(qr) > 2 W_p,

0<=lo
<% 92
whichimplies thatthere is@suchtha[i;cl, wy < Cw; andinthe sameway> o = 3C
s.t. Zi;é w<Cwj. O

Proposition 5.6. Let X be a regular Banach coupld; € (4(X))" and Iet_@ € (0,1)and
1< p < oo If max(do, 61) < 0 < a1 0r ap < 0 < min(do, 61) thenJy ,(X) is not closed

inJp ,(X).

Proof. The proof is based on a method frg4j.

Case(i) max(dg, 41) < 0 < o1.

0 > 60 = Y pogw—k = oo = Tisinjective. Assume thak(T) is closed in G. The plan
is to prove that this implies th&< 1. SinceR(T) is closed and is injective there is a
constaniC > 0 such that|Ta| > C|la|| Va € G.

0 < 01 = 3k > 9C? andn € Z such thatw,; > w,. Let

a=(+S +..5%,.

Since

2k
(I+S+..82=>"y;8/,
j=0

wherey, = k + 1 for the fixed numbek from above, it follows thajjo|| > kwj,1«. We also
get that

T%0=(S — D2+ S+ .52, = (S— DU + S + ... + $5))2%e,

k+1 2
=(S - Iy = en — 2e1k+1 + ent2k+2-

It now follows that

2 2
Chwypr < 1Tl = wp + 2wpgp41 + Wo2k42
< Wy + 4wpgk + 4wy <9 MaXwy, Wptk, Wnt2k)
9 maXwy+k, Wn2k),
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which implies thatw,.x < wni2 Since ¢’k > 9. By iteration it follows that
(Wn1rk) 2o is monotone increasing. Now for all largeand j > 0 it follows that

K@/, D) K@ o
K@ UM, T) 7~ K@ 420, T)

2—(k+r2k)0 K(27(”+rlk)v I o(r2—r1)k)
K(Z—(’H‘"Zk), F) 2—(k+rlk)6

= Wi 2(r2—r1)k0 > 2(r2—r1)k9 > 2(N—2k)0’

Wk+r1k

wheren + (r1 — Dk<j<n+rikandn + rpk <j+ N <n+ (ro + 1)k. Thus

1 K@, I 2k
nf —log, —o 2 > (1-)0.
/S0 N °%2 K@ T) ( N)

it now follows thatf < 1 by letting N — oo. ThusR(T) is not closed.

Case(ii) follows from Case (i) and Propositida.3. [

The two propositions above does not solve the problem completely but with one more
assumption we can get an answer forfadt (0, 1).

Corollary 5.1. If 5o < é1 it holds that Jy ,(X) is not closed ing ,(X) if and only if
op<O0<dgordL<O<oq.

Proof. It only remains to prove thaR(7T) is not closed inG for the breakpoints. Define
T: 4l (ﬁ) — G by t({ox}) = {2% oy }. Thent is an isometric isomorphism and if
Ty = S — 21 it follows thatt(R(Ty)) = R(T). Now the result for the breakpoints follows
from the fact that the set of Fredholm operatorsﬁ@émz%m) isopen. [

Now we will look at the case frorfd] wherel” € Xj,.

Corollary 5.2 (Ivanov and Kalton).If 6 € (0, 1), 1< p < oo and["is bounded orXg but
not on Xy, thenJg(Xo Nker I', X1) ~ Jy ,(X) if 0 > o1, I' is bounded oy ,(X) and

Je(XoNker I', X1) ~ Jp ,(X) Nker I'if 0 < 1 and Jg(Xo Nker I', X1) is not closed
in Jp ,(X) if 61 <0< o1

Proof. K(t,I')<C = dp=00=0. O

6. An application to Hardy-type inequalities

Let

o0 1/p
Ly(w) = fon(o,oo)|||f||Lp<w>=(/0 If(x)lf’w(x)dx) <oo},



94 P. Sunehag / Journal of Approximation Theory 130 (2004) 78—98

p 1/p
w(x) dx) < oo}

o0 l X
Cp(w)={fOH(O,OO)IIIfIIC,,m):(/ ‘—/ f(s)ds
o |xJo
and
N:{fon(O,oo)‘/oof(s)ds=O}.
0

Krugljak et al.[9] investigated the interpolation of intersections question about when the
formula

(N0 Lpy(wo), NN Lpy(w1))g,p 2 N N (Lpy(wo), Lp; (w1))g,

holds. They said that the question has positive answer if it holds and negative if it does not.
Their reason for asking the question is related to the well-known result that iR and
o # 0, then there is a consta@itx) such that

/ u(s)ls* L ds < C() / ' (s)1s* ds ®
0 0

for all infinitely differentiable functions or0, co) with compact support. This result is
implied by the Hardy inequalities

o0 1 X
/ —/ f(s)ds
0 X Jo

o0 1 o0
/ — / f(s)ds
0 X Jx
There is also a negative result that says that) — oo asa — 0. Krugljak, Maligranda
and Persson wanted to know why it is impossible to interpol@}éétweern = 1 and
o = —1 and prove an inequality for= 0. Naturally, we cannot interpolate the inequalities
directly since the inequalities contain two different operatéssand H_ defined by

o 1 o o
X dxgm A [f(x)|x*dx (2 < 0)

and

o 1 * o
x'dxgm A [ f(x)]|x*dx (o > 0).

1 X
(Hy f)(x) = = f (s ds
X Jo
and
1 o0
(H- )0 === f £(s)ds.

but they coincide orN so we can interpolate the inequalities betweéém L1(x) and
N N Li(x~1Y). In[9] they proved that

(NN L1(x), NN Li(x™ D)1~ NN (L1(x), Lix 1)y, < 0# 3

and therefore we do not get an inequality o0& 0 by interpolating. Fofl = % they found
the answer that

(NN Li(x), NN Li(x Y)1/21~ C1(1) N L1(1)
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and they found a functiogi € (L1\C1) N N. They also studied an example with the weights
wo(x) = max(x®, xfo) andw1(x) = min(x*"‘1 x~P1)y where 0< ap < a1, 0 < g < By
andog/o1 < fo/fy1. Foro ¢ [ao+ﬁo’ “Hﬁ ] they found that

(N N Li(wo), N N Li(w1))g1 ~ N N Li(ws%wd)

and for0 € [ ] they proved that

1o+ﬁ ’ O61+ﬂ
(N N Li(wo), N N Li(w1))g1 ~ N N Crws 0wy n Liwi=w).

From that they concluded that

/ /f(S)ds
/OOO %/:Of(S)ds

if 0¢ [“O+ﬁo 01+ﬁ1] and f € N. Furthermore, it is known that (5) holds for &Wwhen
0 <

wg™? 9dx<c/ |f @) wiwla (4)

and

wi? 0dx<C/ |f ) wiw! dx (5)

and (4) holds for alf whenf > dl"_‘:ﬂ . From the theory created in this paper

] it holds that

o +B
we will deduce the new result thatlife [

azo+[5 ’ zx1+ﬁ
N0 Crwiwd) N Liwifwd) = N 0 Liwiwd).

For that purpose we prove the following lemma.

Lemma 6.1. Assume thaivg is an increasing continuous weight function and that
is a decreasing continuous weight function such tﬁ%\tis strictly increasing, lim_o

Lol = 0, lim, o0 %93 = oo and letLy = (L1(wo), L1(w1)). Definel” € (A(L1))’ by

letting

<F,f>=/oof(s)ds
0

and let

-1
s(t) = (3-2) ).

Thatiss(¢) is such thatwo(s (1)) = rw1(s(2)). It then follows that

;gK(t,F, El/)g;-
wo(s(1/1)) wo(s(1/1))

Proof. Fix r > 0 and define the measugg by letting

1

B = o
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If we let M = (M (wo), M (w1)) Where M (w) consists of all regular Borel measures on
(0, 0o) for which

o0
el atcwy = fo w(s)d|ul(s) < co.
It holds that

- 1
J@/t, 1, M) = max(wo(s(l/t)), ;wl(s(l/t))) =1

1
wo(s(1/1))

If we choose non-negative functiofis € A(L1) suchthatfy® f:(s) ds = 1and supp(j C
[s(1/t) — e, s(1/t) + €] it therefore holds that

im <—Jt -t
e—~0+  J(1/t, fe, L1) wo(s(1/1))
Thus
K@, T, Li)> !
9 9 1 = A
wo(s(1/1))
To prove the upper estimate we will make a decompositioh. dfet
o0
<To, f >=f f(s)ds
s(1/1)

and

s(1/1)
< Flv f >=/ f(S) ds.
0

It holds thatl” = I'o + I'1 and
1
wo(s(1/1))
The upper estimate follows from that.]
From the formula foiK (¢, I', L_ll) in Lemma6.1. we can calculate the four indices and

use the results from Secti@to determine the interpolation result. We will do this for the
example that was studied €.

10l Ly woy =t 1l Ly wry =

Theorem 6.1. Let L1 = (L1(wo), L1(w1)) Wherewp(x) = max(x™, x™), wi(x) =
min(xPo, x=P1), 0 < g <y, 0 < Bo< Py and ag/ox < fo/fy. Definel’ € (AL1)
by lettingl'(f) = f0°° f(s)ds. If 0 < 0 < 1it follows that

Jo1(L1) ~ J (1:)4:>9¢[ %0 X }
1:.7\L1) ~ 1\L1 s
6.1; b, a0+ Py o+ By

and
Jo.1.r(L1) ~ Jg1(Ly) Nker I'and I' € (Jyg1(L1))

<=>He( %0 1 )
ao+ o o1+ P/
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Proof. First note that the assumptions implies thelj@L
that

x1+/5 If we manage to prove

B oo o1
K@, T, (L)) ~ min (t w0+fo, t“l”fl) ,

we would be finished since that implies the identities
o0 s o1

—, 01 =01 = ——.

%0 + Bo o+ Py

The result then follows from Propositidn5and Corollarys.1.
If

00 =00 =

1 1
s(1) = min(t %+bo  poa+h)

it follows that
max(s ()%, s (1)) = ¢ min(s(¢) Po, s(z)~Fr).

Hence
_ 1 %0 o
K@, I, L1)~ ———— =min(t%tho ruth)
wo(s(1/1))
and the statements of the theorem now follows as explained in the beginning of the
proof. [

Theorem 6.2. Letwo(x) = max(x°‘0 x%), wi(x) = min(xPo, x 1), 0 < ap < a1, 0 <
Po < B1, 00/o1 < fo/fq and thata ot < 0 < %L, Then there is a constant C such that

By
/ / f(s)ds

holds for all f € N.

wyw dx < C/O 1wy wld (6)
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