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Abstract

Suppose that̄X = (X0, X1) andȲ = (Y0, Y1) are Banach couples and suppose thatT0 : X0 → Y0
andT1 : X1 → Y1 are bounded and linear. Also assume that� ∈ (�(X̄))′ and thatT0 andT1 agree
as maps from�(X̄) ∩ ker� to �(Ȳ ). If the maps do not agree as maps from all of�(X̄) we cannot
interpolateT0 andT1 to a mapT : J�,p(X̄) → J�,p(Ȳ ), whereJ�,p denotes the classicalJ -method.
This situation can for example be found in an article on interpolation of Hardy-type inequalities by
Krugljak, Maligranda and Persson. We will in this paper define functorsJ�,p;� such thatT0 and
T1 interpolate to a mapT : J�,p;�(X̄) → J�,p(Ȳ ). The main purpose of this paper is to make the
definition of theJ�,p;�(X̄) spaces and build a theory for them. We will also do this for more general
real parameters. If� is bounded onX0 it holds thatJ�,p;�(X̄)= J�,p(X0∩ ker�, X1). These spaces
have been studied by Kalton, Ivanov and Löfström. Their results will follow as corollaries to the
more general results of this article and our new theory can be thought of as a theory for generalized
subcouples of codimension one.

In the last section, we apply our theory to a situation considered by Krugljak, Maligranda and
Persson in connection with Hardy-type inequalities. We prove new results and provide a new way of
understanding that kind of problems.
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1. Introduction

In Section1, we will give the reader an introduction to the content of the article. For an
introduction to interpolation theory see Section 2 and for further reading on that topic see
[1–3,6].
If X̄ andȲ are Banach couples such thatY0 ⊂ X0 andY1 ⊂ X1 are closed andY0 and

Y1 are embedded into�(X̄) with the embeddings intoX0 andX1 then we say that̄Y is a
subcouple ofX̄. Pisier[15] studied a case whereX0 = Lp,X1 = Lq on the unit circle and
Y0 = Hp, Y1 = Hq on the unit disk. He proved that̄Y isK-closed, that is, it holds that

K(t, y, Ȳ )�CK(t, y, X̄) ∀y ∈ �(Ȳ ).

From that he concluded that

Ȳ�,p ≈ X̄�,p ∩ �(Ȳ )

for all � andp. To prove that̄Y isK-closed he used duality results between subcouples and
quotient couples and that duality was later investigated in amore general situation by Janson
[5]. To the best of the author’s knowledge, interpolation of subcouples and interpolation of
quotient couples was first considered by Lions and Magenes[10] and theK-closed concept
was first used by Peetre[14].
Löfström[13] looked at different ways of constructing subcouples and one of them was

to consider a finite set� ⊂ X′
1 and letY0 = X0 andY1 = X1 ∩�∈� ker �. In [11] he

used those results to interpolate boundary-value problems of Neumann type and in[12] he
applied them to interpolation with constraints. He also considered the special case when
� is just one linear functional onX1. This case was also independently considered by
Ivanov and Kalton and in[4] they published a complete answer, for regular couples, to the
question about when(X0, X1∩ker �)�,p is a closed subspace of(X0, X1)�,p and from that
they deduced results about exponential bases in Sobolev spaces. A particularly interesting
observation is that in this case it is only the interpolation method and theK-functional of�
that determines the result. That will also be true for the more general theorems presented
in this article. In both[13,4], two indices (the definitions of which can be found in Section
5) were calculated fromK(t,�, X̄′) and the result for the(�, p)-method is determined by
comparing� with the indices. Call the indices�0 and�0. 0��0� �0�1 and the result is
that
1. If � < �0 it holds that

(X0, X1 ∩ ker �)�,p ≈ (X0, X1)�,p.

2. If � > �0 it holds that� is bounded on(X0, X1)�,p and

(X0, X1 ∩ ker �)�,p ≈ (X0, X1)�,p ∩ ker �.

3. If �0� �� �0 it follows that(X0, X1∩ ker �)�,p is not a closedsubspaceof(X0, X1)�,p.
Ivanov and Kalton[4] proved this result and Löfström[11] proved the same result except
that he did not give the answer for� ∈ {�0, �0}. The proofs are different and were produced
independently.
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The article by Ivanov and Kalton[4], will be the foundation for the theory constructed in
this article and we will show that their arguments can be used to prove more general results.
In [4] they described the interpolation spaces they studied with theJ -method, that is

(X0, X1 ∩ ker �)�,p = {x ∈ �(X̄) |x =
∞∑

k=−∞
xk, xk ∈ ker � ∩ �(X̄),

‖{max(‖xk‖X0, 2
k‖xk‖X1)2

−�k)}‖�p < ∞}, (1)

where the sum converges in�(X0, X1 ∩ ker �). That is equivalent to demanding that the
sum should converge in�(X̄), since�(X0∩ker �, X1) ≈ �(X̄)which is proved in Lemma
4.1. Now, we can make the observation that the assumption that� is bounded on at least
one of the endpoint spaces is not necessary for the space in (1) (with�(X̄)-convergence)
to be well defined. We only need to assume that� ∈ (�(X̄))′. We will denote the space in
(1) by J�,p;�(X̄) and we will also use the notationJ�,p(X̄) for (X0, X1)�,p. Since it clearly
holds that

J�,p;�(X̄) ⊂ J�,p(X̄)

we can also in this more general situation ask the question about whenJ�,p;�(X̄) is a closed
subspace ofJ�,p(X̄). In this situation, we will see that we get four indices in the interval
[0, 1] instead of two. Let us call them�0, �0, �1,�1 where�0 is always the smallest and�1
is always the largest. Their definitions can be found in Section5. Under the extra assumption
that�0� �1 we can give a complete answer for regular couples and that is as follows:
1. If � < �0 or � > �1 it holds that

J�,p;�(X̄) ≈ J�,p(X̄).

2. If �0 < � < �1 it holds that� is bounded onJ�,p(X̄) and

J�,p;�(X̄) ≈ J�,p(X̄) ∩ ker �.

3. If �0� �� �0 or �1� ���1 it follows that J�,p;�(X̄) is not a closed subspace of
J�,p(X̄).

So, what are these new spaces good for? The point with them is that if we have bounded
linear mapsT0 : X0 → Y0 andT1 : X1 → Y1 that agree on�(X̄)∩ ker � but not on�(X̄),
as maps from�(X̄) to�(Ȳ ), then we can not interpolate with theJ�,p-method to get a map
T : J�,p(X̄) → J�,p(Ȳ ) but we will see that if� > �0 or � < �1 we get an interpolated
bounded mapT : J�,p;�(X̄) → J�,p(Ȳ ). This is especially interesting whenJ�,p;�(X̄) is a
closed subspace ofJ�,p(X̄) with equivalent norms.We will also define spacesJE;�(X̄) for
the general real method and not only for the(�, p)-method and we will also in that case find
assumptions that allow us to interpolate operators that only agree on�(X̄) ∩ ker �. In the
author’s Ph.D. Thesis [16], the results were also generalized to finitely many functionals. In
[7,8], this kind of interpolation was applied to the study of Hardy-type inequalities initiated
in [9] and to interpolation of Banach algebras. The theory developed in this paper will in
the last section allow us to answer a question connected to some results from[9].
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2. Preliminaries

A Banach coupleX̄ consists of two Banach spacesX0 andX1 continuously embedded
into a Hausdorff topological vector space�. Given a Banach couplēX we define two more
spaces,�(X̄) = X0 ∩ X1 and�(X̄) = X0 + X1. �(X̄) and�(X̄) are equipped with the
norms

‖x‖�(X̄) = max(‖x‖X0, ‖x‖X1)

and

‖x‖�(X̄) = inf {‖x0‖X0 + ‖x1‖X1 | x0 + x1 = x}.
For everyt > 0 we can define other equivalent norms on these spaces by renormingX1.
These norms are

‖x‖�t (X̄)
= J (t, x, X̄) = max(‖x‖X0, t‖x‖X1)

and

‖x‖�t (X̄)
= K(t, x, X̄) = inf {‖x0‖X0 + t‖x1‖X1 | x0 + x1 = x}.

The functionsJ (·, x, X̄) andK(·, x, X̄) above are usually called theJ- andK-functionals.
We will say thatX̄ is regular if�(X̄) is dense in bothX0 andX1. If X̄ is regular it follows

thatX′
0 andX

′
1 are naturally embedded into�(X̄)′ and by choosing those embeddings we

define the dual couplēX′. It holds that�(X̄′) = (�(X̄))′ and�(X̄′) = (�(X̄))′. Similar
identities hold by definition for the�t and�t spaces.
If X̄ and Ȳ are Banach couples we say that a pair of linear and bounded maps,T0 :

X0 → Y0 andT1 : X1 → Y1, constitutes a couple mapT : X̄ → Ȳ if they, as maps into
�(Ȳ ), agree on the intersection. The vector spaceL(X̄, Ȳ ) = {T : X̄ → Ȳ } with the norm
‖T ‖ = max(‖T0‖, ‖T1‖) is aBanachspace.Wewill alsouse thenotationL(X̄) = L(X̄, X̄).
If X̄ is aBanachcoupleandX is aBanachspacewith theproperty that�(X̄) ⊂ X ⊂ �(X̄),

where⊂ means continuous inclusion, then we say thatX is an intermediate space forX̄. If
it also holds thatT : X → X is bounded for allT ∈ L(X̄) we say thatX is an interpolation
space.
TheK- andJ-functionals can be used to construct interpolation spaces with the so calledK-
andJ- method. They are equivalent to each other and are often just referred to as the real
method.
Firstwewill definewhatequivalentmeans.Wesay that two functionsfandgareequivalent

if there are positive constantsc1 andc2 such that

c1f � g� c2f.

Two Banach spaces are equivalent if we can identify them as vector spaces and the norms
are equivalent. We will denote equivalence by≈.
In this paper we will choose to work with the discrete versions of theJ- andK-method.

First let �̄p = (�p, �p(2−k)) where�p is defined onZ and

‖{	k}‖�p(2−k) =
{
(
∑ |	k2−k|p)1/p p < ∞,

sup|	k2−k| p = ∞.
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LetE be an interpolation space for̄�1. Then let

JE(X̄) =
{
x ∈ �(X̄)

∣∣∣∣∣ x =
∞∑

k=−∞
xk, xk ∈ �(X̄), ‖{J (2k, xk)}‖E < ∞

}

and the norm is the infimum over all such representations. If�(�̄1) is dense inE it follows
that �(X̄) is dense inJE(X̄) for all Banach couples̄X and we say thatE is a regular
parameter for the discreteJ-method. IfD is an interpolation space tō�∞,KD is defined by

‖x‖KD(X̄)
= ‖{K(2k, x)}‖D, x ∈ �(X̄).

A parameter for theJ -method is called non-degenerate if it is not contained in�1∪ �1(2−k)

and a parameter for theK-method is called non-degenerate if it is not contained in�∞ ∪
�∞(2−k). If D is a non-degenerate parameter for the discreteK-method andE is a non-
degenerate parameter for the discreteJ -method it holds thatKD(X̄) ≈ JKD(�̄1)

(X̄) and

JE(X̄) ≈ KJE( ¯�∞)(X̄) for all Banach couples̄X.

3. An algebraic construction

In this section, we present an algebraic construction that we will need in some proofs in
the next section.

Definition 3.1. If X̄ is a Banach couple and� ∈ (�X̄)′ we define the Banach couple�X̄
by letting it consist ofX0 andX1 embedded into the space(X0 ⊕ X1)/M where

M = {(x0, x1) | {x0, x1} ⊂ �(X̄) ∩ ker �, x0 + x1 = 0 in�(X̄)}
which will then coincide with�(�X̄).

Remark 3.1. Note that�(X̄) = (X0 ⊕ X1)/M̃ where

M̃ = {(x0, x1) | {x0, x1} ⊂ �(X̄) x0 + x1 = 0 in �(X̄)}
is a quotient space of�(�X̄) sinceM ⊂ M̃.

Remark 3.2. If X̄ is a Banach couple and� ∈ (�(X̄))′ it holds that

�(�X̄)= {(x0, x1) ∈ X0 ⊕ X1 | x0 − x1 = 0 in �(�X̄)}
= {(x0, x1) ∈ X0 ⊕ X1 | x0 − x1 = 0 in �(X̄), {x0, x1} ⊂ �(X̄) ∩ ker �}
= �(X̄) ∩ ker �.

In L(�X̄, X̄) there is an especially important map, namely the map consisting of the
identity maps onX0 andX1. We will denote that map withQ because the induced map
Q : �(�X̄) → �(X̄) is a quotient map. Lets0 ands1 be the embeddings ofX0 andX1 into
�(�X̄).Q(s0(x0)+ s1(x1)) = 0 if and only ifx0 + x1 = 0 in�(X̄) since this is the image
of s0(x0)+ s1(x1) . Furthermore,s0(x)+ s1(−x) = 0 for a certainx ∈ �(X̄) if and only if
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x ∈ �(�X̄) = �(X̄)∩ ker �. It follows thats0(x)+ s1(−x) = s0(y)+ s1(−y) if and only
if �(x) = �(y) and therefore the kernel ofQ is one dimensional and it is spanned by the
elementu = s0(x) − s1(x) wherex is any element in�(X̄) with �(x) = 1 and as in[16]
we will refer tou as the predual of�.

Theorem 3.1. LetX̄ be a regular Banach couple,let� ∈ (�(X̄))′ and let u be the predual
of�. It then follows that

1�K(t, u, �X̄)K(1/t,�, X̄′)�2.

Proof. Since all decompositions ofu are of the formu = s0(x)+ s1(−x) wherex ∈ �(X̄)
and�(x) = 1 it follows that

K(t, u, �X̄)= inf {‖x‖0 + t‖x‖1 | x ∈ �(X̄), �(x) = 1}
= inf

{
1

|�(x)| ; ‖x‖0 + t‖x‖1�1

}
.

SinceK(t,�, X̄′) = sup{|�(x)| | J (t, x, X̄)�1} and J (t, x, X̄)� ‖x‖0 + t‖x‖1�2
J (t, x, X̄) the result now follows. �

4. The JE;�-functor

LetE be a regular parameter for the discreteJ -method,X̄ = (X0, X1) a regular Banach
couple,� a bounded linear functional on�(X̄) and�̄1 = (�1, �1(2−k)). DefineJE;�(X̄) ⊂
JE(X̄) by

JE;�(X̄) = {x ∈ �X̄ | x =
∞∑

k=−∞
xk, xk ∈ ker �, {J (2k, xk)} ∈ JE(�̄1)}

and let the norm be the infimum of‖{J (2k, xk)}‖ over all such representations. For the
(�, p)-method we will writeJ�,p andJ�,p;�. We will begin our investigation ofJE;� by
stating some basic results. They follow easily from the definition and full proofs can be
found in[16] on pp. 49–50.

Property 1. If X̄ is a Banach couple,� ∈ (�(X̄))′ and E is a parameter for the discrete
J-method it follows thatJE;�(X̄) is a Banach space and if E is a regular parameter it holds
that�(X̄) ∩ ker � is dense inJE;�(X̄).

Property 2. Let X̄ be a Banach couple,� ∈ (�(X̄))′ and let E be a regular parameter
for the discrete J-method. Then the closure ofJE,�(X̄) in JE(X̄) is JE(X̄) ∩ ker � if � is
bounded in theJE(X̄)-norm and the whole ofJE(X̄) if � is unbounded.

The following theorem contains the result that makes the spaces JE;�(X̄) interesting.
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Theorem 4.1. Suppose that̄X = (X0, X1) andȲ = (Y0, Y1) are regular Banach couples,
that� ∈ (�(X̄))′, that E is a non-degenerate parameter for the discrete J-method and that{

1

K(2−n,�, X̄′)

}
n

/∈ JE( ¯�∞). (2)

If T0 : X0 → Y0 andT1 : X1 → Y1 are bounded linear operators which,when considered
as maps from�(X̄) to �(Ȳ ), agree on�(X̄) ∩ ker �, then there is a bounded linear map
T : JE;�(X̄) → JE(Ȳ ) such that T as a map from�(X̄) ∩ ker � to �(Ȳ ) agrees withT0
andT1.

Proof. (T0, T1) constitutes a couple mapT : �X̄ → Ȳ and therefore interpolates to a map
T : JE(�X̄) → JE(Ȳ ). By Theorem3.1 it holds that

1�K(t, u, �X̄)K(1/t,�, X̄′)�2,

whereu is the predual of�. Hence, it follows from (2) thatu /∈ JE(�X̄) = KJE(�∞)(�X̄)

and thereforeQ : JE(�X̄) → JE;�(X̄) is an isomorphism and we get our desired map by
composingTwithQ−1. �

Lemma 4.1. If X̄ is a Banach couple where�(X̄) �= {0} and� ∈ X′
0 it holds that�(X0 ∩

ker �, X1) ≈ �(X̄) and if� is also inX′
1 it holds that� ∈ (�(X̄))′ and�(X0 ∩ ker �,

X1 ∩ ker �) ≈ �(X̄) ∩ ker �.

Proof. It is obviously true that‖ · ‖�(X̄) � ‖ · ‖�(X0∩ker �,X1) so we only need to prove that
there is a constantC such that‖ · ‖�(X0∩ker �,X1) �C‖ · ‖�(X̄).
Assume that� is bounded onX0, thatx = x0 + x1 and that

‖x‖�(X̄)(1+ 
)� ‖x0‖0 + ‖x1‖1.
Takew ∈ �(X̄) with �(w) = 1 andJ (1, w)� 2

K(1,�) . Then it follows that

‖x‖�(X0∩ker �,X1) � ‖x0 − �(x0)w‖0 + ‖x1 + �(x0)w‖1
� ‖x0‖0 + ‖x1‖1 + |�(x0)|(‖w‖0 + ‖w‖1)
� ‖x0‖0 + ‖x1‖1 + 4

K(1,�)
‖�‖0‖x0‖0�C‖x‖�(X̄).

ThusJE;�(X̄) = JE(X0 ∩ ker �, X1) and in the same wayJE;�(X̄) = JE(X0 ∩ ker �,
X1 ∩ ker �) when� is also bounded onX1. �

Proposition 4.1. If X̄ is a Banach couple with�(X̄) �= {0}, � ∈ X′
0 and E is a regular

parameter for the discrete J-method it holds that

JE;�(X̄) = JE(X0 ∩ ker �, X1)

and if� is also bounded onX1 it holds that

JE;�(X̄) = JE(X0 ∩ ker �, X1 ∩ ker �) ≈ JE(X̄) ∩ ker �.
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Proof. To prove thatJE;�(X̄) = JE(X0 ∩ ker �, X1) when� ∈ X′
0 we need to prove that∑∞

k=−∞ xk converges in�(X̄) iff
∑∞

k=−∞ xk converges in�(X0 ∩ ker �, X1). That holds
because�(X0∩ker �, X1) ≈ �(X̄) andJE;�(X̄) = JE(X0∩ker �, X1∩ker �)when� is
also bounded onX1 because then� is bounded on�(X̄) and�(X0∩ker �, X1∩ker �) ≈
�(X̄) ∩ ker �. ThatJE(X0 ∩ ker �, X1 ∩ ker �) ≈ JE(X̄) ∩ ker � when� ∈ (�X̄)′ is a
well-known fact. �
Wewill continue by finding conditions for whenJE;�(X̄) is closed inJE(X̄). Define the

spaceG = GE,K(·,�) by letting it consist of all sequences{	k} with

‖{	k}‖G = ‖
{

	k
K(2−k,�)

}
‖E < ∞.

Since

| < �, uk > |
K(2−k,�)

� J (2k, uk)

it follows that:

{J (2k, uk)}k ∈ E ⇒ {< �, uk >}k ∈ G

and that is a reason for studyingG. Another reason is stated in the following lemma.

Lemma 4.2. If X̄ is a regular Banach couple,E is a regular parameter for the discrete
J-method and� ∈ (�(X̄))′ it holds that

� ∈ JE(X̄)
′ ⇐⇒ � ∈ G′,

where� is defined by the formula

�({	k}) =
∞∑

k=−∞
	k.

Proof. The result follows from the fact[3, Theorem 3.7.2]that

‖�‖JE(X̄)′ = sup

{∣∣∣∣∣
∞∑

k=−∞
K(2k,�)�−k

∣∣∣∣∣ ; ‖{�k}‖E �1

}

= sup

{∣∣∣∣∣
∞∑

k=−∞
�−k

∣∣∣∣∣ ;
∥∥∥∥
{

�k
K(2−k,�)

}∥∥∥∥
E

�1

}
= ‖�‖G′ . �

Let (ek) be the standard basis inG, letSbe the shift operator defined byS(ek) = ek+1 ∀k
and letT = S − I . The following two theorems are based on an idea from[4]. R(T ) will
denote the range ofT = S − I .

Theorem 4.2. Let X̄ be a regular Banach couple,� ∈ (�(X̄))′ and let E is a regular
parameter for the discrete J-method. Let also G and T be defined as above. If
(a) R(T ) = G it follows thatJE;�(X̄) ≈ JE(X̄) and if
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(b) R(T ) is closed with codimension one in G it follows that� ∈ (JE(X̄))
′ andJE;�(X̄) ≈

JE(X̄) ∩ ker �.

Proof. The plan is that to everyx ∈ JE(X̄) in (a) andx ∈ JE(X̄) ∩ ker � in (b) and to
every almost optimal representationx = ∑∞

k=−∞ xk find a representationx = ∑∞
k=−∞ yk

such thatyk ∈ ker � and

‖{J (2k, yk)}‖E �C‖{J (2k, xk)}‖E,
whereC is independent ofx and the representations.
SinceR(T ) is closed inG, there is a constantD such that for all� ∈ R(T ) there is	 ∈ G

such thatT 	 = � and‖	‖�D‖T 	‖. If R(T ) is closed with codimension one, thenR(T )
is the kernel of� which is defined by

�({	k}) =
∞∑

k=−∞
	k

and it follows that� is boundedonJE(X̄)by Lemma5.1.Nowsuppose thatx ∈ JE(X̄)with
norm 1 and in (b) that�(x) = 0. Then there exists(xk) in �(X̄) such that

∑∞
k=−∞ xk = x

and

‖J (2k, xk)‖E �2,

which implies that

‖(�(xk))‖G �2.

In (b) we also have that

∞∑
k=−∞

�(xk) = 0.

Thus, we can find	 = {	k} ∈ G such thatT (	) = {�(xk)} and‖	‖G �2D. Then find
elementsuk ∈ �(X̄) such that

J (2k, uk)�2
|	k|

K(2−k,�)

and�(uk) = 	k. It follows that

‖{J (2k, uk)}‖E �2‖	‖G �4D.

Definevk by vk = uk−1 − uk. Then it follows that

‖{J (2k, vk)}‖E � ‖{J (2k, uk−1) + J (2k, uk)}‖E
� 3‖{J (2k, uk)}‖�12D

and�(vk) = 	k−1 − 	k = �(xk) and
∑∞

k=−∞ vk = 0. Thus,x = ∑∞
k=−∞(xk − vk) and

x ∈ JE;�(X̄) with

‖x‖JE;�(X̄) � (12D + 2).
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It follows that in case (a) we haveJE;�(X̄) ≈ JE(X̄) and in case (b)JE;�(X̄) ≈ JE(X̄) ∩
ker �. �
With an additional mild assumption we also get the converse.

Theorem 4.3. Let X̄ be a regular Banach couple,� ∈ (�(X̄))′ and let E is a regular
parameter for the discrete J-method. Let also G and T be defined as before and assume that∑∞

n=−∞ min(1,2n)‖Sn‖B(E) < ∞. Then if
(a) JE;�(X̄) ≈ JE(X̄) it holds thatR(T ) = G and if
(b) � is bounded onJE(X̄) andJE;�(X̄) ≈ JE(X̄) ∩ ker � it holds thatR(T ) is closed

with codimension one in G.

Proof. Assume thatJE;�(X̄) is closed inJE(X̄). Then (a)JE;�(X̄) ≈ JE(X̄) if � is not
bounded onJE(X̄) and (b)JE;�(X̄) ≈ JE(X̄)∩ ker � if � is bounded. In both cases, there
is a constantD > 0 such that‖x‖JE;�(X̄) �D‖x‖JE(X̄). In case (b)

�({	k}k) =
∞∑

k=−∞
	k,

is continuous onG andR(T ) ⊂ ker �.
Assume thata = (ak) ∈ G, ‖a‖G = 1 and in (b) that

∑∞
k=−∞ ak = 0. Takexk ∈ �(X̄)

such that�(xk) = ak and

J (2k, xk)�2
|ak|

K(2−k,�)
.

Then definex by x = ∑∞
k=−∞ xk. it follows that‖x‖JE(X̄) �2 and in (b) that�(x) = 0.

Now, we can findyn ∈ �(X̄) ∩ ker � such that
∑∞

k=−∞ yn = x and

‖{J (2k, yk)}‖E �4D.

Let uk = xk − yk andvn = ∑∞
k=n+1 uk = −∑n

k=−∞ uk. Then it follows that

‖{J (2k, uk)}‖E �4D + 2

and

‖{�(vk)}‖G � ‖{J (2k, vk)}‖E �C‖{J (2k, uk)}‖E
whereC = ∑∞

k=−∞ min(1,2k)‖Sk‖B(E) since

‖{‖vn‖0}‖E �

∥∥∥∥∥∥
{

n∑
k=−∞

‖uk‖0
}
n

∥∥∥∥∥∥
E

=
∥∥∥∥∥
{ ∞∑
k=0

‖un−k‖0
}
n

∥∥∥∥∥
E

=
∥∥∥∥∥

∞∑
k=0

{‖un−k‖0}n
∥∥∥∥∥
E

=
∥∥∥∥∥

∞∑
k=0

(Sk{‖un‖0}n)
∥∥∥∥∥
E

=
∥∥∥∥∥
( ∞∑
k=0

Sk

)
{‖un‖0}n

∥∥∥∥∥
E

�
∞∑
k=0

‖Sk‖B(E)‖{‖un‖0}‖E
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and

‖{2n‖vn‖1}‖E �

∥∥∥∥∥∥
{
2n

∞∑
k=n+1

‖uk‖1
}
n

∥∥∥∥∥∥
E

=
∥∥∥∥∥∥
{
2n

−1∑
k=−∞

‖un−k‖1
∥∥∥∥∥
E

=
∥∥∥∥∥

−1∑
k=−∞

{2n‖un−k‖1}
∥∥∥∥∥
E

=
∥∥∥∥∥

−1∑
k=−∞

Sk{2n+k‖un‖1}
∥∥∥∥∥
E

=
∥∥∥∥∥
( −1∑
k=−∞

2kSk
)

{2n‖un‖1}n
∥∥∥∥∥
E

�
−1∑

k=−∞
2k‖Sk‖B(E)‖{2n‖un‖1}‖E.

it now follows thatT ({�(vk)}) = {�(uk)} = {�(xk)} = {ak}. �
Because of the previous two propositions we know that we can studyR(T ) andG instead

of JE;�(X̄) andJE(X̄). We will now look at the special case when the parameterE is a
weighted�1-space. Note thatG depends on̄X only throughK(·,�, X̄′).

Proposition 4.2. LetX̄ bea regularBanachcouple,� ∈ (�(X̄))′ and letEbe theparameter
for the discrete J-method defined by‖{	k}‖E = ∑ |	k|k wherek+1� k �2k+1. Then

the space G is defined by‖{�k}‖G = ∑ |�k|wk wherewk = k
K(2−k,�) andT = S − I on

G.Then
(a) T is injective iff

∑
wk = ∞.

(b) R(T ) = G if there is a constant C not depending on n such that
∑∞

k=n+1wk �Cwn ∀n
or
∑n−1

k=−∞ wk �Cwn ∀n.
(c) R(T ) is closed with codimension one if there is a constant C not depending on j such

that
∑j−1

k=0wk �Cwj and
∑j−1

k=0w−k �Cw−j ∀j .

Proof. (a)

T a = 0 ⇐⇒ a = c

∞∑
k=−∞

ek,

soT is injective if and only if

∞∑
k=−∞

ek /∈ G.
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(b)

∞∑
k=n+1

wk �Cwn ∀n ⇒



k∑
j=−∞

	j


 ∈ G ∀{	k} ∈ G

since

∞∑
k=−∞

∣∣∣∣∣∣
k∑

j=−∞
	j

∣∣∣∣∣∣wk �
∞∑

j=−∞


 ∞∑
k=j

wk


 |	j |.

It now follows thatR(T ) = G because

T




−

k∑
j=−∞

	j




 = {	k}.

In the same way

n−1∑
k=−∞

wk �Cwn ⇒



∞∑
j=k+1

	j


 ∈ G ∀{	k} ∈ G

since

∞∑
k=−∞

∣∣∣∣∣∣
∞∑

j=k+1

	j

∣∣∣∣∣∣wk �
∞∑

j=−∞


 j−1∑
k=−∞

wk


 |	j |

and it follows thatR(T ) = G because

T






∞∑
j=k+1

	j




 = {	k}.

(c) The linear functional� from Lemma4.2 is bounded since

∥∥∥{	k} ∥∥∥G � w0

C

∥∥∥ {	k}
∥∥∥
�1

and thereforeR(T ) ⊂ ker �. Assume that{	k} ∈ ker � and let

ak =
∞∑

j=k+1

	j = −
k∑

j=−∞
	j
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it follows that

‖(ak)‖G =
∞∑

k=−∞

∣∣∣∣∣∣
∞∑

j=k+1

	j

∣∣∣∣∣∣wk

=
∞∑
k=0

∣∣∣∣∣∣
∞∑

j=k+1

	j

∣∣∣∣∣∣wk +
∞∑
k=1

∣∣∣∣∣∣
∞∑
j=k

	−j

∣∣∣∣∣∣w−k

�
∞∑
j=1

|	j |

j−1∑
k=0

wk


+

∞∑
j=1

|	−j |

 j∑
k=1

w−k


 � (C + 1)‖(	k)‖G

and

T {ak} = {	k}. �

Remark 4.1. The statements in Proposition4.2above are also true whenE is defined by

‖{	k}‖pE =
∑

|	k|pk

where 1�p < ∞. The proof is the same just with Minkowski’s inequality instead of the
triangle inequality.

5. The classical real methods

In this section, we look at what our results in the previous section imply for the(�, p)-
method. In particular the result from[4] follows. In our more general case we get four
indices that determines the answer compared to two indices in the old case where� is
bounded on at least one of the endpoint spaces.

Definition 5.1. Let X̄ be a Banach couple and� ∈ (�(X̄))′. Then define�0, �1,�0 and�1
by

�1 = lim
k→∞ sup

n

1

k
log2

K(2n+k,�)
K(2n,�)

, �1 = lim
k→−∞ inf

n�0

1

k
log2

K(2n+k,�)
K(2n,�)

�0 = lim
k→∞ sup

n�0

1

k
log2

K(2n+k,�)
K(2n,�)

, �0 = lim
k→−∞ inf

n

1

k
log2

K(2n+k,�)
K(2n,�)

.

The following three propositions follow easily from the definition above. The full proofs
can be found in[16, pp. 66–67].

Proposition 5.1. Suppose that̄X is a regular Banach couple,�1 ∈ (�(X̄))′ ,�2 ∈ (�(X̄))′
and that

cK(t,�1, X̄
′)�K(t,�2, X̄

′)�CK(t,�1, X̄
′),

where0< c�C. It then holds that�1 and�2 have the same indices.



P. Sunehag / Journal of Approximation Theory 130 (2004) 78–98 91

Proposition 5.2. Let X̄ be a regular Banach couple,� ∈ (�(X̄))′ and let�0, �0, �1 and
�1 be defined as in Definition5.1above. Then it follows that

max{�0, �0, �1,�1} = �1

and

min{�0, �0, �1,�1} = �0.

Proposition 5.3. Let X̄ = (X0, X1) be a regular Banach couple,let � ∈ (�(X̄))′ and
let the indices�0, �0, �1 and �1 be defined as above. Also letX̄r = (X1, X0) be the
reversed couple of̄X and assume that̃�0, �̃0, �̃1 and �̃1 are the indices calculated from
K(t,�, (X̄r )′). Then it holds that

�̃1 = 1− �0, �̃0 = 1− �1

and

�̃1 = 1− �0, �̃0 = 1− �1.

In Theorem4.1we introduced an assumption that has to hold if we want to use a space
JE;�(X̄) for interpolation purposes. In the proposition below we state that for the(�, p)-
method that holds if� > �0 or � < �1.

Proposition 5.4. Assume that̄X is a regular Banach couple,that� ∈ (�(X̄))′, that � ∈
(0, 1) and that1�p < ∞. If � > �0 or � < �1 it follows that∥∥∥∥

{
1

K(2−n,�, X̄′)

}∥∥∥∥
�,p

= ∞.

Proposition 5.5. Let X̄ be a regular Banach couple,� ∈ (�(X̄))′ and let� ∈ (0, 1) and
1�p < ∞.
(a) If � > �1 or � < �0 it follows thatJ�,p;�(X̄) ≈ J�,p(X̄).
(b) If �0 < � < �1 it follows that� is bounded onJ�,p(X̄) andJ�,p;�(X̄) ≈ J�,p(X̄) ∩

ker �.

Proof. (a) The plan in this proof is to verify the assumptions from Proposition4.2.

� > �1 ⇒ ∃�́ : � > �́ > �1.

It then holds that there is a constantK such thatk�K andn ∈ Z implies that

�́ >
1

k
log2

K(2n+k,�)
K(2n,�)

⇒ 2�́(k+n)

K(2n+k,�)
>

2�́(n)

K(2n,�)
⇒ w−(n+k)2

(�́−�)k > w−n,
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which implies that there is aC such that
∑∞

k=n+1wk �Cwn ∀n wherewn = 2−�n

K(2−n,�) . In
the same way� < �0 implies that there is aC such that

n−1∑
k=−∞

wk �Cwn ∀n.

(b) � < �1 ⇒ ∃�́ such that� < �́ < �1 andK < 0 such that

�́ <
1

k
log2

K(2n+k,�)
K(2n,�)

∀k�K ∀n�0 ⇒ w−(n+k) > 2(�−�́)kw−n,

which implies that there is aCsuch that
∑j−1

k=0wk �Cwj and in the sameway� > �0 ⇒ ∃C
s.t.

∑j−1
k=0w−k �Cwj . �

Proposition 5.6. Let X̄ be a regular Banach couple,� ∈ (�(X̄))′ and let� ∈ (0, 1) and
1�p < ∞. If max(�0, �1) < � < �1 or �0 < � < min(�0, �1) thenJ�,p(X̄) is not closed
inJ�,p(X̄).

Proof. The proof is based on a method from[4].
Case(i) max(�0, �1) < � < �1.
� > �0 ⇒ ∑∞

k=0w−k = ∞ ⇒ T is injective. Assume thatR(T ) is closed in G. The plan
is to prove that this implies that�� �1. SinceR(T ) is closed andT is injective there is a
constantC > 0 such that‖T a‖�C‖a‖ ∀a ∈ G.

� < �1 ⇒ ∃k > 9C−2 andn ∈ Z such thatwn+k > wn. Let

	 = (I + S + ...Sk)2en.

Since

(I + S + ...Sk)2 =
2k∑
j=0

�j S
j ,

where�k = k + 1 for the fixed numberk from above, it follows that‖	‖� kwn+k. We also
get that

T 2	 = (S − I )2(I + S + ...Sk)2en = ((S − I )(I + S + ... + Sk))2en

= (Sk+1 − I )2en = en − 2en+k+1 + en+2k+2.

It now follows that

C2kwn+k � ‖T 2	‖ = wn + 2wn+k+1 + wn+2k+2

� wn + 4wn+k + 4wn+2k �9 max(wn,wn+k, wn+2k)

= 9 max(wn+k, wn+2k),
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which implies thatwn+k < wn+2k since c2k > 9. By iteration it follows that
(wn+rk)

∞
r=0 is monotone increasing. Now for all largeN andj �0 it follows that

K(2−j ,�)
K(2−(j+N),�)

� K(2−(n+r1k),�)
K(2−(n+r2k),�)

= 2−(k+r2k)�

K(2−(n+r2k),�)
K(2−(n+r1k),�)

2−(k+r1k)�
2(r2−r1)k�

= wk+r2k

1

wk+r1k

2(r2−r1)k� �2(r2−r1)k� �2(N−2k)�,

wheren + (r1 − 1)k� j � n + r1k andn + r2k� j + N � n + (r2 + 1)k. Thus

inf
j �0

1

N
log2

K(2−j ,�)
K(2−(j+N),�)

�
(
1− 2k

N

)
�.

it now follows that�� �1 by lettingN → ∞. ThusR(T ) is not closed.
Case(ii) follows from Case (i) and Proposition5.3. �
The two propositions above does not solve the problem completely but with one more

assumption we can get an answer for all� ∈ (0, 1).

Corollary 5.1. If �0� �1 it holds thatJ�,p(X̄) is not closed inJ�,p(X̄) if and only if
�0� �� �0 or �1� ���1.

Proof. It only remains to prove thatR(T ) is not closed inG for the breakpoints. Define

� : �1
(

1
K(2−k,�)

)
→ G by �({	k}) = {2�k	k}. Then� is an isometric isomorphism and if

T� = S − 2�I it follows that�(R(T�)) = R(T ). Now the result for the breakpoints follows

from the fact that the set of Fredholm operators on�1

(
1

K(2−k,�)

)
is open. �

Now we will look at the case from[4] where� ∈ X′
0.

Corollary 5.2 (Ivanov and Kalton).If � ∈ (0, 1), 1�p < ∞ and� is bounded onX0 but
not onX1, thenJE(X0 ∩ ker �, X1) ≈ J�,p(X̄) if � > �1, � is bounded onJ�,p(X̄) and
JE(X0 ∩ ker �, X1) ≈ J�,p(X̄) ∩ ker � if � < �1 andJE(X0 ∩ ker �, X1) is not closed
in J�,p(X̄) if �1� ���1.

Proof.K(t,�)�C ⇒ �0 = �0 = 0. �

6. An application to Hardy-type inequalities

Let

Lp(w) =
{
f on (0,∞) | ‖f ‖Lp(w) =

(∫ ∞

0
|f (x)|pw(x) dx

)1/p

< ∞
}
,
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Cp(w) =
{
f on (0,∞) | ‖f ‖Cp(w) =

(∫ ∞

0

∣∣∣∣1x
∫ x

0
f (s) ds

∣∣∣∣
p

w(x) dx

)1/p

< ∞
}

and

N =
{
f on (0,∞)

∣∣∣∣
∫ ∞

0
f (s)ds = 0

}
.

Krugljak et al.[9] investigated the interpolation of intersections question about when the
formula

(N ∩ Lp0(w0), N ∩ Lp1(w1))�,p ≈ N ∩ (Lp0(w0), Lp1(w1))�,p

holds. They said that the question has positive answer if it holds and negative if it does not.
Their reason for asking the question is related to the well-known result that if	 ∈ R and
	 �= 0, then there is a constantC(	) such that∫ ∞

0
|u(s)|s	−1 ds �C(	)

∫ ∞

0
|u′(s)|s	 ds (3)

for all infinitely differentiable functions on(0,∞) with compact support. This result is
implied by the Hardy inequalities∫ ∞

0

∣∣∣∣1x
∫ x

0
f (s) ds

∣∣∣∣ x	 dx � 1

|	|
∫ ∞

0
|f (x)|x	 dx (	 < 0)

and ∫ ∞

0

∣∣∣∣1x
∫ ∞

x

f (s) ds

∣∣∣∣ x	dx � 1

|	|
∫ ∞

0
|f (x)|x	 dx (	 > 0).

There is also a negative result that says thatC(	) → ∞ as	 → 0. Krugljak, Maligranda
and Persson wanted to know why it is impossible to interpolate (3) between	 = 1 and
	 = −1 and prove an inequality for	 = 0. Naturally, we cannot interpolate the inequalities
directly since the inequalities contain two different operatorsH+ andH− defined by

(H+f )(x) = 1

x

∫ x

0
f (s) ds

and

(H−f )(x) = −1

x

∫ ∞

x

f (s) ds,

but they coincide onN so we can interpolate the inequalities betweenN ∩ L1(x) and
N ∩ L1(x

−1). In [9] they proved that

(N ∩ L1(x),N ∩ L1(x
−1))�,1 ≈ N ∩ (L1(x), L1(x

−1))�,p ⇐⇒ � �= 1
2

and therefore we do not get an inequality for	 = 0 by interpolating. For� = 1
2 they found

the answer that

(N ∩ L1(x),N ∩ L1(x
−1))1/2,1 ≈ C1(1)∩ L1(1)
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and they found a functionf ∈ (L1\C1)∩N . They also studied an example with the weights
w0(x) = max(x	0, x�0) andw1(x) = min(x−	1, x−�1) where 0< 	0� 	1, 0 < �0��1
and	0/	1��0/�1. For� /∈ [ 	0

	0+�0
, 	1

	1+�1
] they found that

(N ∩ L1(w0), N ∩ L1(w1))�,1 ≈ N ∩ L1(w
1−�
0 w�

1)

and for� ∈
[

	0
	0+�0

, 	1
	1+�1

]
they proved that

(N ∩ L1(w0), N ∩ L1(w1))�,1 ≈ N ∩ C1(w
1−�
0 w�

1) ∩ L1(w
1−�
0 w�

1).

From that they concluded that∫ ∞

0

∣∣∣∣1x
∫ x

0
f (s) ds

∣∣∣∣w1−�
0 w�

1 dx �C

∫ ∞

0
|f (x)|w1−�

0 w�
1 dx (4)

and ∫ ∞

0

∣∣∣∣1x
∫ ∞

x

f (s) ds

∣∣∣∣w1−�
0 w�

1 dx �C

∫ ∞

0
|f (x)|w1−�

0 w�
1 dx (5)

if � /∈
[

	0
	0+�0

, 	1
	1+�1

]
andf ∈ N . Furthermore, it is known that (5) holds for allf when

� < 	0
	0+�0

and (4) holds for allf when� > 	1
	1+�1

. From the theory created in this paper

we will deduce the new result that if� ∈
[

	0
	0+�0

, 	1
	1+�1

]
it holds that

N ∩ C1(w
1−�
0 w�

1) ∩ L1(w
1−�
0 w�

1) ≈ N ∩ L1(w
1−�
0 w�

1).

For that purpose we prove the following lemma.

Lemma 6.1. Assume thatw0 is an increasing continuous weight function and thatw1
is a decreasing continuous weight function such thatw0

w1
is strictly increasing, limx→0

w0(x)
w1(x)

= 0, limx→∞ w0(x)
w1(x)

= ∞ and letL̄1 = (L1(w0), L1(w1)). Define� ∈ (�(L̄1))
′ by

letting

< �, f >=
∫ ∞

0
f (s) ds

and let

s(t) =
(
w0

w1

)−1

(t).

That iss(t) is such thatw0(s(t)) = tw1(s(t)). It then follows that

1

w0(s(1/t))
�K(t,�, L̄1

′
)� 2

w0(s(1/t))
.

Proof. Fix t > 0 and define the measure�t by letting

�t = 1

w0(s(1/t))
�s(1/t).
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If we let M̄ = (M(w0),M(w1)) whereM(w) consists of all regular Borel measures on
(0,∞) for which

‖�‖M(w) =
∫ ∞

0
w(s)d|�|(s) < ∞.

It holds that

J (1/t,�t , M̄) = 1

w0(s(1/t))
max

(
w0(s(1/t)),

1

t
w1(s(1/t))

)
= 1.

If we choosenon-negative functionsfε ∈ �(L̄1) such that
∫∞
0 fε(s) ds = 1andsupp(fε) ⊂

[s(1/t)− ε, s(1/t)+ ε] it therefore holds that

lim

→0+ <

f


J (1/t, f
, L̄1)
,� >= 1

w0(s(1/t))
.

Thus

K(t,�, L̄1
′
)� 1

w0(s(1/t))
.

To prove the upper estimate we will make a decomposition of�. Let

< �0, f >=
∫ ∞

s(1/t)
f (s) ds

and

< �1, f >=
∫ s(1/t)

0
f (s) ds.

It holds that� = �0 + �1 and

‖�0‖L1(w0)′ = t‖�1‖L1(w1)′ = 1

w0(s(1/t))
.

The upper estimate follows from that.�
From the formula forK(t,�, L̄1

′
) in Lemma6.1. we can calculate the four indices and

use the results from Section5 to determine the interpolation result. We will do this for the
example that was studied in[9].

Theorem 6.1. Let L̄1 = (L1(w0), L1(w1)) wherew0(x) = max(x	0, x	1), w1(x) =
min(x−�0, x−�1), 0 < 	0� 	1, 0 < �0��1 and 	0/	1��0/�1. Define� ∈ (�L̄1)

′
by letting�(f ) = ∫∞

0 f (s) ds. If 0< � < 1 it follows that

J�,1;�(L̄1) ≈ J�,1(L̄1) ⇐⇒ � /∈
[

	0
	0 + �0

,
	1

	1 + �1

]

and

J�,1;�(L̄1) ≈ J�,1(L̄1) ∩ ker � and � ∈ (J�,1(L̄1))
′

⇐⇒ � ∈
(

	0
	0 + �0

,
	1

	1 + �1

)
.
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Proof. First note that the assumptions implies that	0	0+�0
� 	1

	1+�1
. If we manage to prove

that

K(t,�, (L̄1)
′) ≈ min

(
t

	0
	0+�0 , t

	1
	1+�1

)
,

we would be finished since that implies the identities

�0 = �0 = 	0
	0 + �0

, �1 = �1 = 	1
	1 + �1

.

The result then follows from Proposition5.5and Corollary5.1.
If

s(t) = min(t
1

	0+�0 , t
1

	1+�1 )

it follows that

max(s(t)	0, s(t)	1) = t min(s(t)−�0, s(t)−�1).

Hence

K(t,�, L̄1
′
) ≈ 1

w0(s(1/t))
= min(t

	0
	0+�0 , t

	1
	1+�1 )

and the statements of the theorem now follows as explained in the beginning of the
proof. �

Theorem 6.2. Letw0(x) = max(x	0, x	1), w1(x) = min(x−�0, x−�1), 0< 	0� 	1, 0<
�0��1, 	0/	1��0/�1 and that

	0
	0+�0

< � < 	1
	1+�1

. Then there is a constant C such that

∫ ∞

0

∣∣∣∣1x
∫ x

0
f (s) ds

∣∣∣∣w1−�
0 w�

1 dx �C

∫ ∞

0
|f (x)|w1−�

0 w�
1 dx (6)

holds for allf ∈ N .
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